88 research outputs found

    Performance of Different Atrial Conduction Velocity Estimation Algorithms Improves with Knowledge about the Depolarization Pattern

    Get PDF
    Quantifying the atrial conduction velocity (CV) reveals important information for targeting critical arrhythmia sites that initiate and sustain abnormal electrical pathways, e.g. during atrial flutter. The knowledge about the local CV distribution on the atrial surface thus enhances clinical catheter ablation procedures by localizing pathological propagation paths to be eliminated during the intervention. Several algorithms have been proposed for estimating the CV. All of them are solely based on the local activation times calculated from electroanatomical mapping data. They deliver false values for the CV if applied to regions near scars or wave collisions. We propose an extension to all approaches by including a distinct preprocessing step. Thereby, we first identify scars and wave front collisions and provide this information for the CV estimation algorithm. In addition, we provide reliable CV values even in the presence of noise. We compared the performance of the Triangulation, the Polynomial Fit and the Radial Basis Functions approach with and without the inclusion of the aforementioned preprocessing step. The evaluation was based on different activation patterns simulated on a 2D synthetic triangular mesh with different levels of noise added. The results of this study demonstrate that the accuracy of the estimated CV does improve when knowledge about the depolarization pattern is included. Over all investigated test cases, the reduction of the mean velocity error quantified to at least 25 mm/s for the Radial Basis Functions, 14 mm/s for the Polynomial Fit and 14 mm/s for the Triangulation approach compared to their respective implementations without the preprocessing step. Given the present results, this novel approach can contribute to a more accurate and reliable CV estimation in a clinical setting and thus improve the success of radio-frequency ablation to treat cardiac arrhythmias

    High-density mapping reveals short-term reversibility of atrial ablation lesions

    Get PDF
    Cardiac arrhythmias such as atrial fibrillation occur frequently in industrialized countries. Radiofrequency ablation (RFA) is a standard treatment if drug therapy fails. This minimally invasive surgery aims at stabilizing the heart rhythm on a permanent basis. However, the procedure commonly needs to be repeated because of the high recurrence rate of arrhythmias. Non-transmural lesions as well as gaps within linear lesions are among the main problems during the RFA. The assessment of lesion formation is not adequate in state of the art procedures. Therefore, the aim of this study is to investigate the short-term reversibility of lesions using human electrograms recorded by a high-density mapping system during an electrophysiological study (EPS). A predefined measurement protocol was executed during the EPS in order to create three ablation points in the left atrium. Subsequently, after preprocessing the recorded signals, electrogram (EGM) paths were formed along the endocardial surface of the atrium. By analyzing changes of peak to peak amplitudes of unipolar EGMs before and after ablation, it was possible to distinguish lesion area and healthy myocardium. The peak to peak amplitudes of the EGMs decreased by 40-61% after 30 seconds of ablation. Furthermore, we analyzed the morphological changes of EGMs surrounding the lesion. High-density mapping data showed that not only the tissue, which had direct contact with the catheter tip during the RFA, but also the surrounding tissue was affected. This was demonstrated by low peak to peak amplitudes in large areas with a width of 14 mm around the center of the ablation lesion. After right pulmonary vein isolation, high-density mapping was repeated on the previous lesions. The outer region of RFA-treated tissue appears to recover as opposed to the central core of the ablation point. This observation suggests that the meaningfulness of an immediate remap after ablation during an EPS may lead the physician to false conclusions

    ECGdeli - An open source ECG delineation toolbox for MATLAB

    Get PDF
    The electrocardiogram (ECG) is a standard cost-efficient and non-invasive tool for the early detection of various cardiac diseases. Quantifying different timing and amplitude features of and in between the single ECG waveforms can reveal important information about the underlying (dys-)function of the heart. Determining these features requires the detection of fiducial points that mark the on- and offset as well as the peak of each ECG waveform (P wave, QRS complex, T wave). Manually setting these points is time-consuming and requires a physician’s expert knowledge. Therefore, the highly modular ECGdeli toolbox for MATLAB was developed, which is capable of filtering clinically recorded 12-lead ECG signals and detecting the fiducial points, also called delineation. It is one of the few open toolboxes offering ECG delineation for P waves, T Waves and QRS complexes. The algorithms provided were evaluated with the QT database, an ECG database comprising 105 signals with fiducial points annotated by clinicians. The median difference between the fiducial points set by the boundary detection algorithm and the clinical annotations serving as a ground truth is less than 4 samples (16 ms) for the P wave and the QRS complex markers. The T wave onset, peak and offset were detected with a median difference of 5, 2 and 7 samples, respectively. Results were compared to two free algorithms available on PhysioNet. Our results show that ECGdeli can reliably detect P waves, QRS complexes and T waves. Thus, it can contribute to diagnose specific cardiac diseases by analyzing the ECG signal. As ECGdeli is published under GNU GPLv3 and thanks to its modularity, it can be used to extend existing algorithms or as a benchmark for new algorithms

    ECG-Based Detection of Early Myocardial Ischemia in a Computational Model: Impact of Additional Electrodes, Optimal Placement, and a New Feature for ST Deviation

    Get PDF
    In case of chest pain, immediate diagnosis of myocardial ischemia is required to respond with an appropriate treatment. The diagnostic capability of the electrocardiogram (ECG), however, is strongly limited for ischemic events that do not lead to ST elevation. This computational study investigates the potential of different electrode setups in detecting early ischemia at 10 minutes after onset: standard 3-channel and 12-lead ECG as well as body surface potential maps (BSPMs). Further, it was assessed if an additional ECG electrode with optimized position or the right-sided Wilson leads can improve sensitivity of the standard 12-lead ECG. To this end, a simulation study was performed for 765 different locations and sizes of ischemia in the left ventricle. Improvements by adding a single, subject specifically optimized electrode were similar to those of the BSPM: 2-11% increased detection rate depending on the desired specificity. Adding right-sided Wilson leads had negligible effect. Absence of ST deviation could not be related to specific locations of the ischemic region or its transmurality. As alternative to the ST time integral as a feature of ST deviation, the K point deviation was introduced: the baseline deviation at the minimum of the ST-segment envelope signal, which increased 12-lead detection rate by 7% for a reasonable threshold. © 2015 Axel Loewe et al

    A computational framework to benchmark basket catheter guided ablation in atrial fibrillation

    Get PDF
    Catheter ablation is a curative therapeutic approach for atrial fibrillation (AF). Ablation of rotational sources based on basket catheter measurements has been proposed as a promising approach in patients with persistent AF to complement pulmonary vein isolation. However, clinically reported success rates are equivocal calling for a mechanistic investigation under controlled conditions. We present a computational framework to benchmark ablation strategies considering the whole cycle from excitation propagation to electrogram acquisition and processing to virtual therapy. Fibrillation was induced in a patient-specific 3D volumetric model of the left atrium, which was homogeneously remodeled to sustain reentry. The resulting extracellular potential field was sampled using models of grid catheters as well as realistically deformed basket catheters considering the specific atrial anatomy. The virtual electrograms were processed to compute phase singularity density maps to target rotor tips with up to three circular ablations. Stable rotors were successfully induced in different regions of the homogeneously remodeled atrium showing that rotors are not constrained to unique anatomical structures or locations. Density maps of rotor tip trajectories correctly identified and located the rotors (deviation < 10 mm) based on catheter recordings only for sufficient resolution (inter-electrode distance ≤3 mm) and proximity to the wall (≤10 mm). Targeting rotor sites with ablation did not stop reentries in the homogeneously remodeled atria independent from lesion size (1–7 mm radius), from linearly connecting lesions with anatomical obstacles, and from the number of rotors targeted sequentially (≤3). Our results show that phase maps derived from intracardiac electrograms can be a powerful tool to map atrial activation patterns, yet they can also be misleading due to inaccurate localization of the rotor tip depending on electrode resolution and distance to the wall. This should be considered to avoid ablating regions that are in fact free of rotor sources of AF. In our experience, ablation of rotor sites was not successful to stop fibrillation. Our comprehensive simulation framework provides the means to holistically benchmark ablation strategies in silico under consideration of all steps involved in electrogram-based therapy and, in future, could be used to study more heterogeneously remodeled disease states as well

    Influence of ECG Lead reduction techniques for extracellular potassium and calcium concentration estimation

    Get PDF
    Chronic kidney disease (CKD) affects 13% of the worldwide population and end stage patients often receive haemodialysis treatment to control the electrolyte concentrations. The cardiovascular death rate increases by 10% - 30% in dialysis patients than in general population. To analyse possible links between electrolyte concentration variation and cardiovascular diseases, a continuous noninvasive monitoring tool enabling the estimation of potassium and calcium concentration from features of the ECG is desired. Although the ECG was shown capable of being used for this purpose, the method still needs improvement. In this study, we examine the influence of lead reduction techniques on the estimation results of serum calcium and potassium concentrations. We used simulated 12 lead ECG signals obtained using an adapted Himeno et al. model. Aiming at a precise estimation of the electrolyte concentrations, we compared the estimation based on standard ECG leads with the estimation using linearly transformed fusion signals. The transformed signals were extracted from two lead reduction techniques: principle component analysis PCA) and maximum amplitude transformation (MaxAmp). Five features describing the electrolyte changes were calculated from the signals. To reconstruct the ionic concentrations, we applied a first and a third order polynomial regression connecting the calculated features and concentration values. Furthermore, we added 30 dB white Gaussian noise to the ECGs to imitate clinically measured signals. For the noise-free case, the smallest estimation error was achieved with a specific single lead from the standard 12 lead ECG. For example, for a first order polynomial regression, the error was 0.0003±0.0767 mmol/l (mean±standard deviation) for potassium and -0.0036±0.1710 mmol/l for calcium (Wilson lead V1). For the noisy case, the PCA signal showed the best estimation performance with an error of -0.003±0.2005 mmol/l for potassium and -0.0002±0.2040 mmol/l for calcium (both first order fit). Our results show that PCA as ECG lead reduction technique is more robust against noise than MaxAmp and standard ECG leads for ionic concentration reconstruction

    Rotor termination is critically dependent on kinetic properties of I Kur inhibitors in an In Silico model of chronic atrial fibrillation

    Get PDF
    Inhibition of the atrial ultra-rapid delayed rectifier potassium current (I Kur) represents a promising therapeutic strategy in the therapy of atrial fibrillation. However, experimental and clinical data on the antiarrhythmic efficacy remain controversial. We tested the hypothesis that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of channel blockade. A mathematical description of I Kur blockade was introduced into Courtemanche-Ramirez-Nattel models of normal and remodeled atrial electrophysiology. Effects of five model compounds with different kinetic properties were analyzed. Although a reduction of dominant frequencies could be observed in two dimensional tissue simulations for all compounds, a reduction of spiral wave activity could be only be detected in two cases. We found that an increase of the percent area of refractory tissue due to a prolongation of the wavelength seems to be particularly important. By automatic tracking of spiral tip movement we find that increased refractoriness resulted in rotor extinction caused by an increased spiral-tip meandering. We show that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of blockade. We find that an increase of the percent area of refractory tissue is the underlying mechanism for an increased spiral-tip meandering, resulting in the extinction of re-entrant circuits

    Quantification and classification of potassium and calcium disorders with the electrocardiogram: What do clinical studies, modeling, and reconstruction tell us?

    Get PDF
    Diseases caused by alterations of ionic concentrations are frequently observed challenges and play an important role in clinical practice. The clinically established method for the diagnosis of electrolyte concentration imbalance is blood tests. A rapid and non-invasive point-of-care method is yet needed. The electrocardiogram (ECG) could meet this need and becomes an established diagnostic tool allowing home monitoring of the electrolyte concentration also by wearable devices. In this review, we present the current state of potassium and calcium concentration monitoring using the ECG and summarize results from previous work. Selected clinical studies are presented, supporting or questioning the use of the ECG for the monitoring of electrolyte concentration imbalances. Differences in the findings from automatic monitoring studies are discussed, and current studies utilizing machine learning are presented demonstrating the potential of the deep learning approach. Furthermore, we demonstrate the potential of computational modeling approaches to gain insight into the mechanisms of relevant clinical findings and as a tool to obtain synthetic data for methodical improvements in monitoring approaches

    Parameter Estimation of Ion Current Formulations Requires Hybrid Optimization Approach to Be Both Accurate and Reliable

    Get PDF
    Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today’s high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non-intuitive consequences of ion channel-level changes on higher levels of integration
    • …
    corecore